Copilot Is Not a Magic Pill: Why Some Developers Double Their Productivity with AI While Others Get Slower

GitHub Copilot, Cursor, and Claude Code each have different positioning. But even with the right tool, your productivity might still drop—the key isn’t the tool, it’s whether you have the judgment to wield it. This article analyzes real scenarios for AI-assisted development, common problems, and what kind of people can truly use these tools well.

Copilot 不是萬靈丹:為什麼有人用 AI 寫程式效率翻倍,有人卻越用越慢?

GitHub Copilot、Cursor、Claude Code 各有定位。但工具選對了,效率還是可能變差——關鍵不在工具,在於你有沒有「判斷力」來駕馭它。這篇文章分析 AI 輔助開發的真實場景、常見問題,以及什麼樣的人能真正用好這些工具。

How to Evaluate AI Projects: The Step Most Teams Skip

After adopting AI, your boss asks about the results—and you can’t give a straight answer. It’s not because AI doesn’t work. It’s because no one defined what ‘success’ looks like from the start. This article provides a practical acceptance framework: four metrics you can start tracking today, and how to establish a baseline when you have no historical data.

下一代 QA:在大型 Java 既有專案中實現 AI 驅動的自主多輪驗收測試

深度解析如何利用 LangChain4j、GPT-4o 與 Playwright 打造 AI 測試代理人。本文詳細探討在缺乏文檔的大型 Java 遺留系統中,如何透過「探索、診斷、穩定性」三重迴圈機制,實現超越傳統自動化的自主驗收測試,並提供完整的實作代碼與導入路線圖。